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Abstract In this paper, a macroscopic differential mod-
el for the nonlinear dynamics of the electric field in
ferroelectric ceramics is developed on the basis of
polarization switching theory. In a one-dimensional de-
scription, dynamics with hysteresis caused by polariza-
tion switching is modelled by using the Landau theory
of phase transitions for single-crystal cases. For ferro-
electric ceramics, the orientation of the principal axis
of grains is assumed to have a certain distribution. The
overall dynamics is determined by making a weighted
combination of the dynamics of each grain. The weight
function for the combination is taken phenomenolog-
ically based on experimental observations. It is shown
that experimental hysteresis can be reproduced by the
macroscopic differential model precisely.

Keywords Hysteresis · Polarization switching ·
Polycrystals · Landau theory · Macroscopic model

1 Introduction

Ferroelectric ceramics are widely used in many en-
gineering applications due to their capability of con-
verting energy among thermal, mechanic, and electric
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types. As in many cases, the dynamics of the material
(and devices made from it) can be described by using
simple linear constitutive laws when the external load-
ing is confined in a rather small range [1, 2]. In fact,
the dynamics of the ferroelectric materials is inherently
nonlinear when subject to larger loadings where several
physical fields are coupled together. In many cases, the
applied electric field may induce polarization switch-
ing in the material and thus introduce memory effect
(hysteresis) into the nonlinear dynamics. Therefore, it
is essential for engineering application developments
to construct suitable mathematical models for the non-
linear dynamics and hysteresis based on a better un-
derstanding about the mechanism of nonlinearity and
hysteresis [3, 4].

In modelling the nonlinear coupled dynamics in the
ferroelectric material and devices, it is indicated by
experimental observations that, in most of cases, the
nonlinear dynamics of the electrical field has a major
contribution to its hysteretic behaviour, and this non-
linearity will cause nonlinear dynamics in the thermal
and mechanical dynamics due to complicated coupling
effects among various field components. In order to
construct a macroscopic model for the full dynamics of
the material in engineering applications, it is essential
to capture the hysteretic dynamics in the electric field
by using a simple model [3, 4].

It is known experimentally that the polarization and
orientation switchings are complex processes with mul-
tiscale dynamics embedded in. The switching process
involves nucleation, growth kinetics, relaxation effects,
grain size effects, local and non-local effects, and many
other effects. Construction of a single comprehen-
sive model aiming at capturing all the related fea-
tures at various scales is almost impossible due to the
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complexity of the physics. On the other side, it is not
necessary to use such a model for the purpose of
engineering applications since the major concern for
engineering applications is related to macroscopic non-
linear and hysteretic dynamics. Although, the dynamics
involved in nucleation and growth at the microscale is
important for the macroscopic dynamics of the mate-
rial, it can be safely ignored in the current discussion
since it takes place at a much smaller scale compared to
typical engineering application scales.

In this paper, a macroscopic differential model for
the nonlinear dynamics of the electric field in ferroelec-
tric ceramics is developed on the basis of polarization
switching theory. A one-dimensional structure is con-
sidered for simplicity. Hysteretic dynamics for single-
crystal cases is modelled by using the Landau theory
for the first-order phase transitions. The essence of
the model is to associate polarization orientations with
local minima of a non-convex potential function, and
the hysteretic dynamics of the material is then modelled
by simulating the dynamics of system state switchings
among the local minima. For polycrystals, the single-
crystal model is extended by assuming that various
polarization grains, each has a different principal-axis
orientation, exist in the considered ceramics, and their
principal axis orientations follow a certain distribution.
The hysteretic dynamics in each grain is then mod-
elled as a single crystal case. The overall dynamics is
determined by making a weighted combination of the
dynamics of all polarization grains. The weight function
employed is taken as a phenomenological function of
the angle between the principal axis in the considered
grain and the applied electric field, which can be iden-
tified by using experimental data. The resulting model
is formulated as set of nonlinear differential equations.
Numerical experiments are carried out and compari-
son between model results with reported experimental
counterparts indicates that the hysteretic dynamics are
well captured by the model.

2 Landau theory for polarization switching

It is well understood nowadays that hysteresis be-
haviour in ferroelectric materials is a consequence of
orientation switching of polarization dipoles upon its
exposure to external fields. In a one-dimensional de-
scription, assuming that the material temperature is
always below the Curie temperature, the polarization
orientation is parallel to the principal axis (directed
along or opposite to the principal direction). Switch-
ing between these two orientations will always be a
180◦ degree switching [3, 4]. In order to approximate

the effects of the 90◦ degree switching in a higher-
dimensional case, another orientation is introduced in
the current one-dimensional description as sketched
in Fig. 1, namely the upward-polarization orientation
Po [5].

For the convenience of the following discussion, we
denote the rightward orientation of the polarization
as P+ while the leftward one as P−. Hysteresis and
related nonlinear dynamics of the electric field in the
ferroelectric materials can be modelled by studying the
dynamics of the switching between these three polar-
ization orientations (phase transitions).

According to the Landau theory, the essential el-
ement in the modelling of phase transition dynamics
is a free-energy function which is capable of charac-
terizing different phases. For the current problem, the
polarization orientation switching can be treated as a
phase transition problem, in which each polarization
orientation is treated as one phase. Since there are
three polarization orientations involved (P+, P− and
Po), it is necessary to construct the free-energy function
such that it has three local minima, each minimum is
associated with one polarization orientation. By taking
into account the symmetry property of the polarization
orientations in ferroelectric materials, it is clear that a
6th-order polynomial of the order parameter with only
even order terms is suitable for the purpose [5, 6]. Since
only the electric field is considered here, the Helmholtz
free-energy function can be constructed similar to the
Landau free-energy function at a given temperature [5]:

�(P) = a2

2
P2 + a4

4
P4 + a6

6
P6. (1)

where a2, a4, and a6 are material constants need to be
determined by using experimental data, and P is the po-
larization which is chosen as the only order parameter
for the current problem.

Fig. 1 Sketch of one-dimensional polarization switchings in fer-
roelectric materials
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Fig. 2 The schematic plot of a free-energy function � with two local minima (left). The resultant E − P relationship revealing hysteresis
(right)

Using the above free-energy function, the three dif-
ferent polarization orientations can be characterized
by its three local minima, provided suitable values for
the parameters. To clarify the discussion, one example
of the free-energy function (non-dimensionalized) is
plotted in Fig. 2 (left) with the following parameter
values, a2 = −1, a4 = 0.846, a6 = 1.07.

The plots evidently show that there are two local
minima in the free-energy function, corresponding to
the P+ (right rectangle) and P− (left rectangle), re-
spectively. The two orientations are symmetrical (with
regard to the center). It is also clear that in this case
only P+ and P− are stable and the local maximum Po

is unstable. It indicates that orientation switching can
only take place between P+ and Po. If a2 is increased
to a certain value, Po will also become a local minimum
and thus locally stable. In this case, a 90◦ switching is
also modelled.

3 Governing equations

For the construction of a differential model at the
macroscale, the relationship between the polarization
and the applied electric field is sought as a differen-
tial equation. For engineering applications, the whole
device made from ferroelectric materials is normally
treated as a homogeneous one, hence microstructures
and related dynamics are averaged out. The govern-
ing equations for the entire material (devices) is then
the same in the considered domain (independent on
the location). Therefore the governing equation for

a single lattice can be used as the macroscopic gov-
erning equation for the material. To formulate the
dynamic equation for a single lattice, the relaxational
Time-Dependent Ginzburg-Landau (TDGL) theory at
mesoscale is employed [5, 7].

Using the Helmholtz free energy function, the gov-
erning equation for the polarization P can be formu-
lated as follows:

dP
dt

= −γ
∂�(P)

∂ P
+ r, (2)

where γ is a coefficient accounting for dissipation ef-
fects in the polarization dynamics, r represents distur-
bances (including external input) to the system [5, 7].
For the current problem, the input is the applied elec-
tric field E, so the dynamical process of polarization
can be described by the following equation, according
to the TDGL theory:

τ
dD
dt

= a2 D + a4 D3 + a6 D5 − E. (3)

where τ = −1/γ can be regarded as relaxation coeffi-
cient, and P is replaced by the electric displacement D
due to the fact that D is very close to P in most cases
(for high relative-permitivity materials) [5].

If the loading E is kept at a constant value for a long
time (or is sufficiently slow), the system will achieve
its equilibrium state which is given by the following
relation (setting dD

dt = 0):

E = a2 D + a4 D3 + a6 D5. (4)
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It can be easily illustrated that hysteresis is embed-
ded in the dynamics given by Eq. 3. As indicated by
the E − D relation sketched in Fig. 2 (right), when the
applied field E is increased from negative to positive
values, the equilibrium curve will be the curve ABC.
Point C is a turning point because CD is not a stable
branch. Therefore the system will jump to another
stable branch EF favored by the applied field. Ideally
the jump will follow the vertical line (dashed vertical
line start from C) but in reality there are always friction-
and dissipation-mechanisms which make the line non-
vertical and non-straight (i.e., a smooth curve with a
changing slope). Here it is sketched as a straight line
CE for illustrative purposes. The slope depends on
frictions and many other factors. When the loading
direction is reversed, a jump DB is present starting
from another turning point D also with a changing
slope. Point B does not coincide with C, neither does
E with D. This yields the hysteresis behaviour.

In order to characterize the three phases involved in
the current model, the free-energy function is chosen
as the sixth-order polynomial given in Eq. 4 such that
it has three local minimum and satisfy symmetry re-
quirements [8]. Such a choice is purely due to its math-
ematical convenience for the analysis, which certainly
not unique. In some cases, a sixth order polynomial will
introduce numerical difficulties and other unnecessary
restrictions. In practice, it can be conveniently replaced
by a piecewise non-convex spline having the same num-
ber of local minima and the required symmetry [8].

4 Multiple domain model

Different from the single crystal cases, the princi-
pal axis of polarization orientations is not uniform in

ferroelectric ceramics. There are many grains in the
material. In each grain, orientation switching can only
be induced in the direction parallel to the principal axis,
as sketched in Fig. 3 but the principal axes in different
grains are different. Therefore the same applied electric
field on the bulk material will induce different dynamics
of orientation switching in different grains.

Let us consider a grain in which the principal axis
has an angle of θ (θ ∈ [0, π/2] is representative with
the symmetry properties required) with the direction
of the applied electric field. If one assume that only
the field component parallel to the principal axis can
induce orientation switching (is effective for polariza-
tion switching), the polarization dynamics along the
considered principal axis can be modelled by using
Eq. 3:

τ
dDθ

dt
= a2 Dθ + a4 D3

θ + a6 D5
θ − E cos θ, (5)

where the function cos θ ∈ [0, 1] is to model the effec-
tive electric field for the orientation switching along
the considered principal axis direction. It is actually
a projection from the applied electric field E to the
principal axis. The effect of cos θ is that, for a certain
applied electric field E on the considered ferroelectric
ceramics, orientations along some principal axis (θ is
close to zero) will be switched earlier since the effective
field along the principal axis is stronger. There might be
some orientations which will not be switched at all if θ

is close to or equal to π/2 since the effective field is very
small. The distribution θ varies with materials.

The polarization in the considered grain induced by
polarization switching has its contribution to the overall
polarization in the direction of the applied electric field.
Again, the contribution should be projected from Dθ

Fig. 3 Sketch of polarization
switching in ferroceramics

E = 0

E  ≠ 0
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to the direction of the applied electric field due to
the angle θ , which can be expressed as Dθ cos θ . In
order to average the contributions from the grains with
different orientations, it is assumed that there is a grain
orientation distribution in the considered material, by
which the volume ratio of grains with a specific θ can
be specified as function β(θ). This orientation distrib-
ution measures the amount (by ratio) of grains whose
principal axis has a angle θ with the applied electric
field. By using the grain orientation distribution, the
overall dynamics of the material can be formulated as
a weighted combination of dynamics in different grains
as follows:

D =
∫ π/2

0
Dθ cos θβ(θ)dθ =

∫ π/2

0
Dθλθdθ, (6)

where λθ = cos θβ(θ) is the effective weight function
accounting for the contribution of the electric displace-
ment from the grains with θ to the overall electric
displacement. It is a function of θ and independent on
time and the applied field.

In order to write the equation in a differential form,
the above model is re-formulated as the following by
taking the derivatives of D with respect to time:

dD
dt

=
∫ π/2

0

dDθ

dt
λθdθ, (7)

which is continuous in θ . For the sake of convenience
of engineering applications, the integral can be ap-
proximated by using the Gaussian quadrature as the
following:

dD
dt

=
N∑

k=1

wkλk
dDk

dt
=

N∑
k=1

Wk
dDk

dt
, (8)

where wk is the kth weight coefficient for the Gaussian
quadrature formulation which approximates the inte-
gral operator, N is the number of quadrature points, λk

is λθ valued at the kth quadrature point, and Dk is Dθ

valued at the kth quadrature point. Since wk is already
known (given by the quadrature formulation), it can
be easily merged with the weight function into a new
one Wk.

If one assume that the relaxation effects in all the
grains are the same as τ , the overall differential model
can be formulated as:

τ
dDk

dt
= a2 Dk + a4 D3

k + a6 D5
k − E cos θk,

k = 1, 2, · · · , N, (9)

D =
N∑

k=1

Wk Dk. (10)

where θk is θ valued at the kth quadrature point. A
closer look at Eq. 9 shows that, there is no need to
simulation N equations simultaneously, since they all
have the same coefficients, except that the loading is
changing as E cos θk. This fact indicates that one can
obtain the output Dk for all the k with one simulation
followed by certain transformations.

The remaining task for the modelling is to identify
the coefficients τ, a2, a4, a6 and to construct the weight
function Wk from experimental data. The estimation
process itself is a challenging task due to the complexity
of the dynamics caused by nonlinearity and bifurca-
tions. Only primitive estimation results will be pre-
sented in the next section, while detailed information
for the estimation tasks will be reported elsewhere.

5 Numerical experiments

To demonstrate the capability of the proposed model,
hysteresis caused by the polarization switching in
PZT-5 is modelled and compared with experimental
measurements. Experimental E − D relations for the
material are found from [3] and re-plotted for com-
parison purposes. The validation of the model is done
by checking the closeness of the model results using
estimated parameters to the experimental data.

The estimation is done in two steps. The first step
is to estimate the coefficients τ, a2, a4 and a6. Theo-
retically, it has to be estimated by using several sets
of dynamic experimental data performed with various
loading rates on a single crystal sample. The second step
is to simulate the outputs Dk by using the estimated
τ, a2, a4 and a6 values, and fit it to the experimental data
to determine the weight coefficients Wk. Due to lacking
of dynamical experimental data with different loading
rates, here the estimation of τ is ignored and it is arti-
ficially set zero, which is based on the assumption that
the loading rate is sufficiently slow such that the system
will be always in its equilibrium states (no relaxation
effects are taken into account for switchings in single
crystal).

For the estimation of a2, a4 and a6, the numerical
strategy chosen is to formulate the parameter estima-
tion problem as a nonlinear optimization problem as
the following [5]:

min
a2,a4,a6

G =
M∑

i=1

(
D̃i − Di

)2
(11)

where M is the number of experimental data samples,
D̃i experimental values of D at the ith time instant,
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Fig. 4 Single-crystal models by using the Landau theory, (a) Hysteresis loop with θ = 0, (b) Hyseresis loops with different grain
orientations

while Di are the simulated values at the ith time instant.
By using the given experimental data, the estimated
values for the three coefficients are the following:

a2 = −4.2951 × 106, a2 = 1.7889 × 108,

a6 = −1.5928 × 109, (12)

Using the above values, one can easily simulate all
the Dk as functions of t and E by using Eq. 9, which are
all hysteresis loops with different shapes. For the sake
of clarification, the predicted hysteresis loops for the
grain with θ = 0 is plotted in the left in Fig. 4 together
with the experimental data, and other hysteresis loops
associate the angle of θ = 0, π/3, 3π/8, 7π/16 are plot-
ted in the right of Fig. 4. The full loop is only sketched
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for one of them (θ = 7π/16) by using dashed line in
order to make illustration clearer. Similar closed loops
for other θ can be easily obtained by inserting lines
following the same way as being done in Fig. 2.

By fitting the weighted combination of all the hys-
teresis loops to the experimental data, all the weight
coefficients Wk can be identified by using Eq. 10. Wk

can be regarded as the continuous weight function
valued the kth quadrature point. It is a function of θ .
The estimated profile is plotted in Fig. 5, which is inter-
polated from the discrete values Wk.

Using the estimated parameter values and weight
coefficients, the closeness of the modelled hysteresis
loop to the experimental one is sketched in Fig. 6 (solid
lines). In the simulation, 50 quadrature points are used,
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thus 50 nonlinear differential equations are included. In
the figure, experimental data are plotted as circles for
comparison purpose. It is shown that the experimental
measured E − D curve including hysteresis loops is
precisely captured by the model constructed in this pa-
per including the relaxation of polarization switchings
in polycrystals as mentioned in [5, 8].

The comparison indicates clearly that the exper-
imental results could be captured precisely by the
constructed model. It is easy to understand that for
different hysteretic behaviour in different materials,
two things need to be adjusted. One is the single-crystal
model determined by the crystal structure in the ma-
terial. Another one is the weight function determined
by the distribution of the various grain orientations.
Beneficially, the current model is formulated as ordi-
nary differential equations, which is very convenient
for many engineering applications such as analysis and
control. The rate-dependency is naturally enclosed in
the model due to the differentiation operation in time
domain.

6 Conclusion and discussion

In the current paper, the hysteretic dynamics of ferro-
electric ceramics is modelled by a set of nonlinear dif-
ferential equations. The hysteretic dynamics of single

crystals is first described by a single differential equa-
tion using the Landau theory for the first-order phase
transition. In polycrystals cases, the model is extended
by assuming that the overall dynamics is a mixture of
dynamics in each grain. Comparison of model results
with experiments shows that hysteretic dynamics can be
precisely captured by the proposed model.
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